PENINGKATAN KEMAMPUAN KONEKSI MATEMATIS DAN SELF EFFICACY SISWA DALAM PEMBELAJARAN GEOMETRI MENURUT TEORI VAN HIELE DENGAN PENDEKATAN BUDAYA SUNDA DI SEKOLAH MENGAH ATAS
DOI:
https://doi.org/10.30999/ujmes.v3i1.836Keywords:
mathematical connection ability, self efficacy, geometry, Van Hiele theory, Sundanese cultureAbstract
geometry learning according to Van Hiele theory with the Sundanese culture approach compared with the students who get
the conventional learning. (2) to know the improvement of self efficacy in the students who get the geometry learning according
to Van Hiele theory with the Sundanese cultural approach compared to the students who get the conventional learning. (3)
to know the relationship between the ability of mathematical connection with self efficacy in the learning of geometry. This
research is a quasi experimental design experiment using non-equivalent control group pretest-posttest design. The subjects
of this study are the students of grade XI SMAN 1 Sukabumi and SMAN 3 Sukabumi academic year 2014/2015.
The variable of this research consists of 2 variables, namely independent variables in the form of learning geometry according
to van hiele theory with the approach of Sundanese culture and dependent variable in the form of mathematical connection
ability and student self efficacy. Technique of collecting research data using mathematical connection ability test on geometry
material and self efficacy scale. Technical analysis of data in this study using inferential statistics which includes t-test sample
independent and Pearson product moment correlation analysis. This test is done with the help of SPSS Version 20.00
software. The results showed that the improvement of mathematical connection ability of students who acquired geometry
learning according to Van Hiele theory with the Sundanese culture approach differed significantly compared to students who
received conventional learning and increased self efficacy of students who acquired geometry learning according to Van Hiele
theory with different Sundanese cultural approach significantly compared with students who received conventional learning,
but there is no significant relationship between mathematical connection ability and self efficacy of students on learning
geometry.
References
----- . (2006). Innovation on Mathematics Curriculum and Textbooks. [Online]. Tersedia:
http://www.apecneted.org/resources/downloads/Math_Curriculum_in_China.pdf Berlin, D. F.
and Hillen, J. A.(1994). “Making Connection in Math and Science: Identifying Student Outcomes”.
School Science and Mathematics.94 (6).
Banihashemi, S.S.A.(2003). “Connection of Old and New Mathematics on Works of Islamic
Mathematician with a Look to Role of History of Mathematics on Education of Mathematics.”
[Online]. Informing Science. Tersedia:
http://proceedings.informingscience.org/IS2003Proceedings/docs/009Banih.pdf
Bergeson, T. (2000). Teaching and Learning Mathematics: Using Research to Shift From the
“Yesterday” Mind to the “Tommorow” Mind . [Online]. Tersedia: www.k12.wa.us. [20 April
.
Coxford, A.F. (1995). “The Case for Connections”, dalam Connecting Mathematics across the
Curriculum. Editor: House, P.A. dan Coxford, A.F. Reston, Virginia: NCTM.
Cuoco, A.A., Goldenberg, E.P., Mark, J. (1995). “Connecting Geometry with the Rest of
Mathematics”, dalam Connecting Mathematics across the Curriculum. Editor: House, P.A. dan
Coxford, A.F. Reston, Virginia: NCTM.
Dasari, D. 2003. Pengembangan Model Pembelajaran dengan Pendekatan Berbasis Masalah
sebagai Upaya Menunbuhkembangkan Kemampuan Matematik Tingkat Tinggi dalain
Implementasi Kuriukulum Berbasis Kompetensi. Proposal Hibah Penelitian
Fuys, D., Geddes, d., and Tischler. 1988. The van Hiele Model Tinking in Geometry among
Adolescent. Journal for research inMathematics Education.Number 3. Volume XII.
Hadi, S. dan Fauzan, A. (2003). Mengapa PMRI? Dalam Buletin PMRI (Pendidikan Matematika
Realistik Indonesia) edisi I, Juni 2003.
Hodgson, T.(1995). “Connections as Problem-Solving Tools”, dalam Connecting Mathematics
across the Curriculum. Editor: House, P.A. dan Coxford, A.F. Reston, Virginia: NCTM.
Hudoyo.H. (1998). Pembelajaran Matematika Menurut Pandangan Konstruktivistik.Makalah
Seminar Nasional Pendidikan Matematika, IKIP Malang.Johnson, K.M. dan Litynsky, C.L. (1995).
“Breathing Life into Mathematics”, dalam Connecting Mathematics across the Curriculum.
Editor: House, P.A. dan Coxford, A.F. Reston, Virginia: NCTM.
Moeharti. 1993. Pelajaran Geometri yang Pernah Hampir Diabaikan. (Makalah disampaikan pada
Konperensi Matematika VII di Surabaya, tanggal 7 – 11 Juni 1993). Surabaya: ITS, IKIP Surabaya,
dan Universitas Airlangga.
NCTM. (2000). Principles and Standards for School Mathematics. Tersedia di www.nctm.org.
Ikhsan, M. (2008). Meningkatkan Prestasi dan MotivasiSiswa dalam Geometri melalui Pembelajaran
Berbasis teori Van Hielle. Disertasi pada PPS UPI : Tidak Dipublikasikan
Kennedy,L.M. Tipps Steve. (1994). Guiding Children’s Learning of Mathematics. : Wadswarsh
Publishing Company.
Kahfi . S. Muhammad. (1999). Analisis materi Geometri Dalam Buku Paket Matematika Sekolah
Dasar Ditijnau Dari Teori Van hieles. Tesis tidak diterbitkan. Malang : dalam program pascasajana
IKIP Malang.
NCTM. (1989). Curriculum and Evaluation Standard for School Mathematics.Virginia : The NCTM
Inc.
Ruseffendi, E.T. 1991. Pengantar kepada Membantu Guru Mengembangkan Kompetensinya dalam
Pengajaran Matematika untuk Meningkatkan CBSA. Bandung: Tarsito.
Ruspiani. 2000. Kemampuan dalam Melakukan Koneksi Matematika. Tesis pada PPs UPI: tidak
diterbitkan.
Sawada, D. (1996). “Mathematics as Connection Making in Japanese School”. School Science and
Mathematics. 96 (5).
UJMES, volume 03, number 01, Januari 2018 Pujia Siti Balkist
ISSN 2528-0686 P. 169 - 177
UNINUS Journal Published © 2018 177
Slavin, R.E. 1994. Educational Psichology Theory, & Practice (Fourth Edition). Massachusetts Ally
and Bacon Publishers.
Suherman, E. & Winataputra, U.S. 1993. Strategi Belajar Mengajar Matematika. Jakarta:
Depdikbud.
Sumarmo. U. 1987. Kemampuan Pemahaman dan Penalaran Matematika Siswa dikaitkan dengan
Kemampuan Penalaran Logik Siswa dan Beberapa Unsur Proses Belajar Mengajar. Disertasi pada
PPs UPI: tidak diterbitkan.
Sumarmo (2006). Berfikir Matematik Tingkat Tinggi. Makalah pada Seminar Pendidikan Matematika
UNPAD, Bandung.
Sumarmo, U. (2000). Proses Belajar dan Pemahaman Materi Kuliah.Makalah pada Lokakarya TPB.
ITB.
Tim MKPBM. (2000). Strategi Pembelajaran Matematika Kontemporer.Bandung: Jurusan
Pendidikan Matematika FPMIPA UPI.
Wahyudin. 1999. Kemampuan Guru Matematika, Calon Guru Matematika, dan Siswa dalam
Mata Pelajaran Matematika. Disertasi Doktor pada PPs UPI Bandung: tidak diterbitkan.
Yaniawati, P. 2003. Pembelajaran dengan pendekatan open ended dalam upaya meningkatkan
kemampuan koneksi matemalika siswa. Tesis pada PPs UPI: tidak diterbitkan.
TIM MKPBM. (2001). Strategi Pembelajaran Matematika Kontemporer.Bandung : UPI.
Wu Der-bang. (2005). A Study of the Geometric Concepts of Elementary School Students Van hiele
Level one. [Online] Tersedia :
http://www.emis.de/proceedings/PME29/PME29RRPapers/PME29Vol4WuMa.pdf
November 2013]