ANALISIS KEMAMPUAN PEMAHAMAN DAN KEYAKINAN MATEMATIK PADA PEMBELAJARAN MATEMATIKA MENGGUNAKAN STRATEGI KONFLIK KOGNITIF
DOI:
https://doi.org/10.30999/ujmes.v10i1.3443Keywords:
strategi konflik kognitif, pemahaman matematis,keyakinan matematik.Abstract
The skill of mathematical understanding and student’s belief to mathematic are an important elements one student should have, to help students to solve mathematic problems, along with daily problems. One of the ways to analysis this is through a learning process where a situation, fact, and condition that polarize student’s cognitive structure are involved. In such situation, conflict between student’s knowledge and designed situation happened. The main problem of this research is about how the analysis understanding skill and student’s mathematical belief, are reviewed based on learning method (cognitive conflict strategy and conventional), and school rank (high and middle). This research is an experiment with pretest-posttest control group design. Cognitive conflict strategy is given to the experiment group, while conventional learning is given to control group. This research is involving 140 seventh grade students in Bandung City that represent schools in high and middle rank. The instruments of this research is Mathematical Understanding Skill test and Mathematical Belief scale. Data analysis used in the hipotesist test is t-test, two way Anova, and Scheffe test. The summary of this research is, In general, student’s mathematical understanding skill and student’s mathematical belief that is given the cognitive conflict strategy and school rank (high and middle) is significantly different than student that is given the conventional learning.
References
Ausubel, D. P. (1978). Educational Phsychology: A cognitive view 2nd. New York: Holt
Rinehart and Winstone.
Eynde, P.O., Corte, E.D., & Verschaffel, L. (2006). “Framing student’s mathematics-related beliefs: A quest for conceptual clarity and a comprehensive Categorization”. Beliefs: a hidden variable in mathematics education? Editor: Leder, G.C., Pehkonen, W., dan Torner, G. London: Kluwer Academics Publisher.
Gagne, R.M. 1974. The condition of Learning and Theory of Instruction. New York: Dreyden Press.
Goldin, G.A. (2002). “Affect, Meta-Affect, and Mathematical Beliefs Structures”. Beliefs: A Hidden Variable in Mathematics Education? Editor: Leder, G.C., Pehkonen, W., dan Torner, G. London: Kluwer Academics Publisher.
Greer, B., Verschaffel, L., & Corte, E.D. (2002). “The Answer is Really 4,5: Beliefs about Word Problems”. Beliefs: A Hidden Variable in Mathematics Education? Editor: Leder, G.C., Pehkonen, W., dan Torner, G. London: Kluwer Academics Publisher.
Herman, T (2006). Pembelajaran Berbasis Masalah Untuk Meningkatkan Kemampuan Berpikir Matematis Tingkat Tinggi Siswa Sekolah Menengah Pertama. Bandung:PPS UPI. Disertasi tidak diterbitkan.
Hiebert J & Carpenter, T.P. (1992). Learning and Teaching with Understanding. In D.A Grouws (Ed). Handbook of Research on Mathematics Teaching and Learning. NCTM. NewYork : Macmilan Publishing Company.
Hudojo, H. (1998). Pembelajaran matematika menurut pandangan konstruktivistik. Makalah disajikan pada Seminar Nasional Upaya-upaya meningkatkan peran pendidikan dalam era globalisasi PPS IKIP MALANG.
NCTM. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA : NCTM.
--------- (2002). Principles and standards for school mathematics, Reston, Virginia.
Niaz, M. (1995). Cognitive Conflict as A Teaching Strategy in Solving Chemistry Problems, Journal of Research in Science Teaching, Volume 32, issue 9, 959-970.
Nunokawa, K. (1998). “Empirical and Autonomical Aspect of School Mathematics”. Tsukuba Journal of Educational Study in Mathematics, Vol. 17, 1998, pp. 205-217. [Online] Tersedia: http://www.juen.ac.jp/g_katei/ nunokawa/ kaita/ empirical.pdf [1 Juni 2008].
Priatna, N. (2002). Kemampuan Penalaran dan Pemahaman Matematika Siswa Kelas III SLTP Negeri di Kota Bandung. Disertasi doktor PPS UPI Bandung: tidak dipublikasikan.
Putri, H. E. (2006). Pembelajaran kontekstual dalam upaya meningkatkan kemampuan komunikasi dan koneksi matematik siswa SMP (Penelitian Eksperimen di SMP Negeri 3 Tanjungpandan Kabupaten Belitung Propinsi Kepulauan Bangka Belitung). Tesis Magister pada SPs UPI Bandung. Tidak Diterbitkan.
Rahman, A.(2004). Meningkatkan Kemampuan Pemahaman dan Kemampuan Generalisasi Matematik Siswa SMA melalui Pembelajaran Berbalik. Tesis pada Sekolah Pasca Sarjana UPI.: Tidak Diterbitkan.
Ruseffendi, E. T (2006). Dasar-dasar penelitian pendidikan & bidang non-eksakta Bandung:Tarsito.
Schoenfeld, A. H. (1992) Learning to Think Matematically: Problem solving, metacognition, and sense making in mathematics. Electronic Journal: International Journal For Mathematics Teaching and Learning. [Online]. Tersedia: http://www.intermep.org.
Suryadi, D. (2005). Penggunaan Pendekatan Pembelajaran Tidak Langsung Serta Pendekatan Gabungan Langsung dan Tidak Langsung dalam Rangka Meningkatkan Kemampuan Berpikir Matematik Tingkat Tinggi Siswa SLTP.
Disertasi, PPS-UPI. Tidak diterbitkan.
Wardhani, S. (2004). Penilaian pembelajaran matematika berbasis kompetensi. Yogyakarta: PPPG Matematika Yogyakarta.
Wu, Z. (2004). The Study of Middle School Teachers’ Understanding and Use of Mathematical Representation in Relation to Teachers’ Zone of Proximal Development in Teaching Fractions and Algebraic Functions.